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Abstract

The spatial development of a 3D turbulent incompressible mixing layer is computed
by using Large Eddy Simulation (LES). The time and space fluctuations of velocity
components lead to the energy spectra. We can then to highlight the characteristic
scales in both time and space. The energy spectra in time are in agreement with the
turbulence theory and show two significant dimensionless frequencies; the largest
one encountered for all the variables corresponds to the creation of main rolls.
On the energy spectra in space, we can observe also two spanwise scales, one of
them is found everywhere in the flow while the other one is representative of the

phenomena inside the mixing zone.
Key words: Turbulence, Mixing layer, LES, Time and space scales.

1. Introduction

In incompressible flows, a mixing layer develops at the confluence of two parallel
flows with different velocities, from the trailing edge of a flat plate (fig. 1.a).
Instabilities then grow and eddy structures appear in the mixing zone, such as
Kelvin-Helmoltz rolls, aligned with spanwise direction. A second instability creates
other streamwise vortices (braids), observed between main structures. We study
the spatial development of a 3D turbulent incompressible mixing layer, at a high
turbulent Reynolds number. Therefore, control methods and flow reconstruction
methods such as POD approach, require good unsteady descriptions of spatially
developed flows.

The Reynolds number R, = 3.5 x 107 is based on the velocity difference
Unigh = Utow (Unigh = 42.8 m/s and Ujy = 25.2 m/s) and on the value of the
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vorticity thickness experimentaly mesured at a reference section in the similarity
zone, as 4,(zo) = 0.03 m.

The mixing layer development is computed with a LES code, using a velocity-
vorticity formulation. The influence of the subgrid model has been previously stud-
ied (Lardat et al. , 1998). It was also pointed out that the upstream condition has
a significant influence on the quality of the results (Pellerin et al. , 1999). The
velocity and the Reynolds stress tensor profiles show self-similarity behavior and
a good agreement with the reference experiment data (Delville, 1994).

Coherent structures have been visualized in this simulation and a study of
the energy spectra in time and space, associated to this turbulent mixing layer
computed by LES, would be able to find their time and space characteristics and
are analyzed in order to recover the classic properties of the turbulence phenomena.
Energy spectra are represented in appropriate y positions, to highlight the time
and space characteristic scales of the flow. Our numerical results are compared to
experimental ones and to the well known theoretical behaviors.

2. Numerical method : LES

We use a velocity-vorticity formulation of the Navier-Stokes equations. In LES,
the exact field ¢ is split into a filtered variable ¢ and a subgrid variable ¢'. The
incompressible vorticity transport equation can then be written as:

@—Vx(vxw)%—-%—Vx(1+w)wa ; W=VXv 1)

_ ot
where ¥ and @ correspond to the filtered variables, resolved on the grid. The
subgrid effects are based on the Taylor theory by means of a subgrid model using
an eddy viscosity, v, related to the macroscopic quantities. The filtered velocity
and pressure fields are obtained by a projection method (Lardat et al. , 1997).
A mixed scale subgrid model is used here (Ta Phuoc, 1994):

v = [(Csay ol [caaviFT] @

where k' corresponds to a kinetic energy associated to the subgrid cell. Note that
we obtain classical vorticity and TKE models for special values of the a exponent (0
and 1 respectively). Cs and Cp correspond to the Smagorinsky and the Bardina
constants respectively. Following several simulations, we choose @ = 0.5 which
leads to the better results for this kind of problem. The advantage of this model
is to dump smoothly the eddy viscosity in the regions where all the scales are well
resolved. :

The upstream condition corresponds to the mean velocities, according to ex-
perimental values (Delville, 1994). A rather high white noise is superimposed on
this condition in order to obtain a correct development of the mixing layer (Pellerin

et al. , 1999).
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At the outlet surface, a convective transport hypothesis is applied (viscous
effects neglected). The vorticity tangential components are calculated using an ex-
trapolation along the characteristics. The outlet propagation velocity 7 is deduced
from vorticity, taking into account the mass flux conservation over this surface.
In the inhomogeneous direction (y), a slip condition is imposed at the lower and
upper surfaces. A periodicity condition is used for the spanwise direction (z).

A staggered M.A.C. grid is used for the spatial discretization (inhomogeneous
grid in y). Time and space derivatives are estimated by second order schemes. The
LES code used has been vectorized and reaches very good performances, the use
of FFT allowing speed improvement (for homogeneous directions). For example,
on a NEC-SX5 with a maximal performance of 8 GFlops (IDRIS-CNRS, Orsay),
we obtain for a classical run about 5 GFlops (7 x 10~7 sec./time step/point).

3. Statistical study of the turbulent mixing layer

Vorticity thickness, velocity and stress tensor components

Solving unsteady Navier Stokes filtered equations for incompressible flows, we
obtain then the unsteady velocity components. The figure 1.b shows the evolution
in time (for 3000 time steps) of the flow direction component u, for three positions
over the shear direction y. This variable has a strong turbulent behavior inside
the mixing layer (at y = 0 on the figure) and very low variations outside of it (at
y = +4,, here).

Therefore, mean values are computed over a large integration time over 9000
time steps. Using a reference time of d,,(x0)/ (Unigh — Ulow), this interval corre-
sponds to a dimensionless time of 61.7. We then obtain the mean velocity values
and also the Reynolds stress tensor components. The mean values in time are next
averaged over the transversal direction z to compare with experimental data.

The characteristic lenght of this flow is the vorticity thickness d,(x) which
increases linearly with the flow direction z. Turbulent structures in the mixing
layer can be observed for y € [—%‘,+%‘"], where y is the shear direction. The
vorticity thickness is calculated from the mean longitudinal velocity (u):

6u(e) = [ = @)/ (52 ®

The self similarity behavior is recovered when using the dimensionless parameters

d, and AU = Upigh — Ulow. The velocity profiles show a good self-similarity be-
havior (fig. 2.a). While it is more difficult to converge the Reynolds stress tensor
components, the resolved profiles are similar and show the quality of our simula-
tion (fig. 2.b), using the mixing scale subgrid mode! and an appropriate upstream
perturbation. All the results agree with experimental ones.
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Energy spectra computation

Energy spectra in time and space are computed from velocities, which can be
stored through the calculation and on the 3D grid. There are about two million
points in the mesh. Therefore, we select for storage five vertical positions y, such as
the center of the mixing layer y = 0, its up and down boundaries y = + §,,/2 and
two positions outside of the mixing layer, y = + 4. It is well known that these are
the right positions to exhibit the characteristical scales. In addition, special values
of the longitudinal z locations are selected inside the self-similarity zone, where
the mixing layer is fully developed. In conclusion, the velocity storage is performed
for all time steps and for all spanwise direction points, for these particular (z,y)
locations (these positions are represented on figure 1.a).

The Kintchine’s theorem about random steady functions (Chassaing, p46,
2000) allows to obtain the energy spectra using a Fourier transformation for ve-
locity fluctuations. The energy spectra in time as functions of frequencies f are
computed with a common vectorized FFT. The same procedure is followed in
space, for the transversal direction z. The energy spectra in space are represented
as function of the wave numbers k,.

4. Energy spectra results and characteristic scales

For a normalized representation, we use the dimensionless wave numbers k,,(z) =
k. *4,, and the dimensionless frequencies f,(z) = -,%’I—. We choose for the reference
velocity Uconv = (Unigh + Ulow) /2, according to the Taylor's hypothesis. Energy
spectra are then plotted as function of the (local) dimensionless frequencies f, and
the (local) dimensionless wave numbers kz,.

Some characteristic dimensionless frequencies or wave numbers can be identi-
fied and correspond to the characteristic scales in time and space. For time energy
spectra, the characteristic scale is found for. the maximal value, just before the
theoretical fall down. Spatial evolutions are controled by a spatial scale which is
a wave length, obtained by A, = 1/k, and unsteady phenomena are characterized
by a time scale T' = 1/f.

Energy spectra in space, associated to the spanwise direction z, are presented
on figure 3 for u., uy and u, velocity components, as function of the dimensionless
wave numbers. Spectra are plotted for two different z locations. For every y posi-
tion in the mixing layer, we find equivalent evolutions for both r positions. Spectra
have maximal values in the center of the mixing layer, at y = 0 and decrease from
the center to ouside. Qutside of the mixing zone, energy spectra present very small
intensities. Therefore, energy is localized in the mixing layer where the velocity
gradient is representative of the flow behavior.

A first characteristic spatial scale is encountered in energy spectra for all veloc-
ities. Its value is about 0.15-0.18 and coincides with the largest scale (wave length)
observed experimentally, equal to 0.15. This scale is representative of turbulent
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phenomena everywhere in the flow for u, and u, velocities (figs. 3.a and 3.b) and
outside of the mixing layer for u, (fig 3.a).

We find a second spatial scale in u, energy spectra, which characterizes the
spatial evolution inside the mixing layer. This scale is 0.5 at the boundaries of
the shear zone (+ d.,/2) and stabilizes itself at 0.65 in y = 0. The u, energy
spectra show also this characteristic scale, because of divergence free effects. In
these spectra, this scale is clearly visible only in the center of the mixing layer, at
y =0, and is equal to 0.7. This second scale has been estimated experimentally to

be equal to 0.5.

Therefore, the characteristic spatial scales obtained numerically are in good
agreement with experimental results, which means that the spatial behaviors must
be rather well simulated. The main conclusion is the highlight of two characteristic
scales for u., one representing phenomena inside the mixing layer and the other
outside of the mixing zone:.

The characteristic spatial scale representatlve of phenomena inside the mixing
layer, kz, = kz * 4, ~ 0.5 — 0.65, can be associated to the wave lenght A, ~
[1.54—2.] é.. This spanwise scale characterizes the spacing between two successive
secondary structures (braids). We recover approximatively expenmental results of
Bernal and Roshko for the equivalent problem. -

Figure 4.a represents the timc energy spectra for u, velocity, using as self-
similarity parameter, the dimcnsionless frequency ﬁ%"— Inside the mixing layer,
from the center y = 0 to the fronticrs ¥y = % 6,,/2, energy spectra have equivalent
evolutions and are similar for the three different chosen positions z. A characteristic
scale f, less than 0.2 is clearly found and aggrees with the experimental value
of 0.15 observed by Delville (1995). An other time scale expresses the behavior
outside the mixing layer. The value of this scale compares well quantitatively with
the experimental one equal to 0.3.

Energy spectra for u, is plotted on figure 4.b. Everywhere within the flow, for
all y positions, the same scale is representative of turbulent phenomena, about 0.3.
We don’t represent here energy spectra for the transversal velocity u, because we
find the same behavior as u,. In addition, these two velocities have energy spectra
which do not depend on the z position.

The main characteristic time scale f, ~ 0.3 can be associated to a longitudinal
wave lenght Ay = T % Ugpny, which controls longitudinal space evolutions. We can
then write A, = 3.33 §,,. This longitudinal lenght represents the spacing between
two successive spanwise vertices (Kelvin-Helmoltz instabilities). If we consider the
ratio between the transversal wave lenght A; and the longitudinal one, A, /A, ~
0.46 — 0.6 which compare quantitatively well with the experimental value of 2/3
usually found.

On figures 4.a and 4.b, the decrease of curves after their maximal values (char-
acteristic scale in time), have at least over one decade a correct slope of approxi-
matively - 5/3, according to the well known theoretical slope of the energy cascade.
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5. Conclusion

A 3D spatially developed mixing layer is studied numerically using LES. Energy
spectra are computed in order to highlight the characteristic scales in both time
and space. Two spanwise scales are found; one is encountered everywhere in the
flow and the other is representative of the spanwise spacing between braids. In ad-
dition, two dimensionless frequencies are observed on energy spectra in time, which
behave well. The largest frequency corresponds to Kelvin-Helmoltz instabilities.
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Figure 1. (a) Spatially developing mixing layer geometry. The mixing phenomena estab-
lishes behind the trailing edge of a flat plate, at the confluence of two different velocity
turbulent flows; x : (z,y) storage locations for energy spectra computation; (b) Longitu-
dinal velocity u inside the mixing layer at y = 0 and outside at y = +6,, (¢ = Upign = 42.8
m/s) and y = —6, (u =~ Ubw = 25.2 m/s), evolution for 3000 time steps.
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Figure 2. Superposition of profiles (at ten streamwise locations) versus the self-similarity
parameter (%; ¥0)/dw. (a) uz mean velocity, (b) first component of the Reynolds stress
tensor, <% >. L.E.S. performed using mixed scale model and white noise perturbation
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Figure 3. Spatial energy spectra for the spanwise direction z, inside and outside the
mixing layer, for two z locations from the flat plate, 450 mm and 525 mm: (a) energy
spectra for u, velocity, which show two characteristic scales in space; (b) energy spectra
for u, velocity; (c) energy spectra for u. velocity.
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Figure 4. Time energy spectra inside and outside the mixing layer, for three z locations
from the flat plate, 375 mm, 450 mm and 525 mm : (a) energy spectra for u, velocity,
which show two characteristic scales in time; (b) energy spectra for u, velocity, with only




